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Abstract: The Technology Enabled Active Learning (TEALpj&€ct at MIT has developed a range of 3D
visualizations and simulations to foster intuitioroabelectromagnetic fields and phenomena. In thiswa
discuss the software approaches used to create thegkatgins, including Java 3D applets for interactive
visualization, passive animations created with 3ds max,tteemdynamic Line Integral Convolution (DLIC)
method for constructing time dependent representatiotieeaflectromagnetic field at close to the resolutibn
the computer display (Sundquist, 2003).

Introduction

Over the last eight years, the MIT Physics Departrhastintroduced major changes in the
way that introductory physics is taught at the Instittibeough the Technology Enhanced
Active Learning (TEAL) Project (see Figure 1). The TERtoject was under Departmental
guidance and was an outgrowth of initiatives sponsored éyiii Council on Educational
Technology. The courses involved are the various flaedr8.01 (mechanics) and 8.02
(electricity and magnetism). The new format isexger of lecture, recitations, and hands-on
laboratory experience into a technologically and @olfatively rich experience for incoming
freshmen, and is described and assessed in Dori and BE20I0&). We are not the first to
teach in this format. “Studio Physics” loosely denogesormat instituted in 1994 at
Rennesaeler Polytechnic Institute by Jack Wilson. Thoagegy has been modified and
elaborated on at a number of other universities, notalilye North Carolina State University
Scale-Up program. We have expanded on the work of others by ad@iomponent centered
on active and passive visualizations of electromagr@tEnomena, supported in part by
grants from NSF. In this paper we will discuss thosaalizations, which are open source
under a liberal license (sdetp://web.mit.edu/viz/soft). You can find the visualizations
discussed in this paper and many others by going to the linkbelo

http://web.mit.edu/8.02t/www/802TEAL3D/teal tour.htm

Our contention is that using visualizations helps studentsunderstanding
electromagnetic fields because in this way we can rifekaormally unseen seen. Moreover,
when animated, the dynamical effects of fields can merstood by analogy with rubber
bands and strings. The insight connecting field shapgynamics is due to Faraday, the
father of the concept of fields. Making the fieldshis and animated and using the analogy
of rubber bands and strings gives insight into the reaSwt fields have the effects that they
do.



Figure 1: The D’Arbeloff Active Learning Classroom at MIT

Dynamic Line Integral Convolution (DLIC)

We first discuss a novel technique for visualizing fields Whias developed at MIT
in the course of the TEAL Project. The visualizat@mtime dependent vector fields is a
central problem in scientific visualization. There hayen two advances in computer
graphics since 1993 which have fundamentally changed the haayector fields can be
visualized in two dimensions. The first of these waes introduction of the Line Integral
Convolution (LIC) method for showing the structure ofteg fields at a resolution near that
of the display, using textures generated by convolving tberéeld with a grid of pixels of
random brightness [Cabral and Leedom, 1993]. The secasdhe introduction of a method
for the animation of a LIC using a second velocity fieddevolve the underlying grid of
random pixels used to generate the LIC [Sundquist, 2003]. &hisr Imethod, called
Dynamic Line Integral Convolution (DLIC), produces an aati@d sequence of images of the
first field such that the time dependence of thatfislevident from frame to frame by the
inter-frame coherence in the LIC texture pattern.

In a paper to be submitted to the American Journal o§iPsiyBelcher and Koleci
[2007] discuss at a heuristic level how these two algoritvork, and why they are effective
learning tools for electromagnetism. The motivationtfos paper is to make the LIC and
DLIC methods and their educational impact more widelywmto the physics community.



The LIC method uses correlations in a texture pattesmow the spatial structure of a
vector field. To explain heuristically how the LICgafithm works, we first consider a
constant field. Given a square arrayNxN pixels of random brightness, we want to generate
a textured array of the same dimension, where tharepattern indicates the direction of the
constant field, to within a sign. To do this, we prea@srNxN random array pixel by pixel
to produce the new texture array, as follows. At amgld (see Figure 2), we average the
brightness of the pixels along a line centered onl @ixand in the direction of the local field,
for n pixels,n << N, and put this value in our new texture array at the sacaidm as pixel
1 was in the initial array.
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Figure 2: To produce a LIC image for the constant fieldie take each pixel in a random

pattern, for example, pixel 1, and average the brightokthe n pixels lying along a line
parallel to F centered on pixel 1, as indicated by theewimié.

We now move to an adjacent new pixel and repeat this paotess again (Figure 3).
If we move parallel to the field to get to the newabixsay pixel 2 in Figure 3, then the
resulting average that we obtain at pixel 2 is alntbetsame as the average for pixel 1,
because most of the pixels are the same. So thelatald brightness at pixel 2 is highly
correlated with the brightness of pixel 1. If on tteer hand we move perpendicular to the
field to get to the new pixel, say pixel 3 in Figure 3, tbgulting average is not correlated at
all with the average at pixel 1, because none of thelpixhose brightness is being averaged
are the same. This process produces a new array whscbohalations in brightness (or
darkness) along the field direction. Another way ofirgg this is that we have produced a
texture pattern where the streaks in the texture ardgddmathe field direction, as shown in
Figure 4.

Now consider the LIC procedure for a field that variespace. If we simply follow
the procedure described above and average the brightngseelsf along straight lines in
space, where the direction of the straight line izheined by the local direction of the field
at (for example) pixel 1, we would get a visual repreg@nt of the field but it would be
inaccurate, because we would be assuming that the loeaindine can be reasonably
approximated by a straight line along the entire n pixelagreg length. For locations where
the local radius of curvature of a given field line ig&compared to the n pixel length of the
averaging line, this assumption is valid. However, & tbcal radius of curvature is
comparable to or smaller than the length of n pixelsgatbe averaging line, this assumption



is no longer valid, and correlations in the textureguatso generated will no longer show the
details of structure of the field at this scale.

Figure 3: We calculate the brightness at pixels 2 and&/ésaging over the brightness of
the n pixels lying along the lines parallelR@entered on pixels 2 and 3, as indicated by the
two white lines.

Figure 4: A LIC of a constant field, constructed in thenmer described in the text.

To correct for this, the Cabral and Leedom LIC algoridwerages over n pixels along
a line in space, but the averaging line is no longer @hktrine, but the field line that passes
through the point at which we are calculating the newutextvalue, for example pixel 1.
That is, the texture pattern is convolved with the fistducture along a line in space
determined by the field lines, thus the name line integratalation. This procedure retains
the property that movement along the local field dioectexhibits a high correlation in
brightness values, but movement perpendicular todinattion exhibits little correlation, and
this is true even in regions of high curvature.



Figure 5 shows a DLIC of the vector functidi{x, y) =sin® (x)i - co ¢ ). Even

relatively simple functions such as this can produce coomwikual images. One of the
attractions of this method of visualization is thastiirts with a random pattern and then
superimposes order on that pattern, but the underlying ractiaracter still persists in the
image. This makes the image much less “sterile” thast womputer generated images.

Figure 5. A LIC of a simple vector field.

Dynamic Line Integral Convolution (DLIC) extends the LBEJgorithm to time-
dependent fields. The vector fiek{x,t) is allowed to vary arbitrarily over time, with the
motion of its field lines described by a second velocitgtaefield, D(x,t). That is, at any
timet the field line ofF(x,t) passing through at timet is displaced in space at tihe dt to
a new position x + D(x,t) dt.

The DLIC algorithm originated by Sundquist produces an aromdiy evolving the

random texture input used in LIC in a manner prescribed bydloeity field D. That is, if
T(x,t) represents our random texture map, we evolve it with according to

T(x,t+dt)=T(x=D(x.t)dt,t) ) (1



Intuitively, since the particles that produce the inputuextadvect according to the motion
field D, the LIC convolution of the field lines &f with the texture from one frame to the next
samples the same part of the texture pattern, sindextee particles and field lines move in
concert. Thus, the streaks in the LIC fappear to move from one frame to the next
according to the motion field. Each output image in the sequence will individuallyehthe
same properties as a static LIC rendering, but succefsirees will have an inter-frame
coherence that depicts the prescribed motion of thelirees.

We now give an example of the use of this techniqudectremagnetism where the
construction of a DLIC is of physical interest. Andaicting ring with massn, radiusa,
resistanceR and self-inductancé is located on the-axis above a stationary permanent
magnet with a magnetic dipole moment vector thaeisical. The normal to the ring is along
the verticalz-axis, and the ring is constrained to move along that aXhe ring is released
from rest att = 0, and falls under gravity toward the conducting ring. Eddyents arise in
the ring because of the changing magnetic flux as tlgnetdalls toward the ring, and the
sense of these currents will be such as to slowitige The overall field configuration of the
total magnetic field will be as shown in Figure 6. eTolution for the motion of the ring
involves the solution to three coupled ordinary difféisdrequations for the-coordinate of
the falling ring, the current in the ring, and theoordinate of the velocity of the falling ring.

According to the scheme introduced by Belcher and OIB&@J] the magnetic field
lines in this case should evolve with a velocity fieldegi by

_ExB (2)

D 52

The physical interpretation of this velocity field is titarepresents the guiding center motion
of a set of low energy electric monopoles initisdlyanged along any given magnetic field
line, as those monopoles drift in the time-dependentreleand magnetic fields. Using this
definition has the advantage that the motion in the Disl@cally in the direction of the
electromagnetic energy flow vector.

Figure 6 shows one frame of a DLIC for the magnetiid fof a conducting ring falling
toward a stationary magnetic dipole. Regions of kigivature occur near the two zeroes just
above the ring. The zeroes are distinguishable byilted X-like structure near them. For
comparison we also draw four field lines in the figur&he full animation can be found on
the web in links at the URL given above.



Figure 6: One frame of a DLIC for a Faraday’s Law vigadion. A conducting ring falls
toward a stationary magnetic dipole, and eddy cur@metsnduced in the ring.

Java 3D Interactive Applications

In addition to many passive DLICs of electromagnetic ph@ma similar to that in
Figure 6, we have also developed a set of Java 3D ititerapplets. Figure 7 is an example
of one of these applications, modeled on the same phgsidscussed for Figure 6. In this
application the student has a choice of displaying the tependent magnetic field in one of
three different ways: (1) a field line representatiwhere a discrete set of curves are drawn
which are everywhere parallel to the local field diwamt (2) a vector field grid
representation, where a set of icons on a fixed grgpafial coordinates represents the field
direction at a given grid point; (3) a LIC represeatati The first two of these are
computationally fast, and can be displayed in real tis¢he ring falls toward the magnet.
The third is computationally slow, and essentially thelent chooses a frame for which to
draw the LIC and stops the real time execution of {heli@ation to display the LIC. In
addition, the student can vary in real time various patars associated with the physics of
the problem, e.g. the resistance of the ring or thgnitiede of the dipole moment of the
magnet.
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Figure 7: An interactive Java 3D application for thenfg ring.

Pedagogical Usefulness

Visualizations and simulations are powerful tools iftustrating physical processes
and making sense of the relationship between differerdigdiyquantities. Via visualizations,
scenarios that are otherwise too difficult to be edrout experimentally can be explored, and
processes that are not normally visible can be predanta variety of ways. In addition to

helping students grasp and understand abstract conceptsizaisoias often excite learning
interest with their visual richness.

Although visualizations are stimulating, they often dosmtespond to what students
would observe in the real world. How important is the patween the simulated situation
and the real world counterpart? More importantly, do stisdguly understand what they see,
and do they take away from the visualizations and simoukthe message that the designers
intended to convey? The central questions that wewrently investigating are: (1) how
effective are visualizations in conveying key ideas; andv(ijt are the essential elements of
a visualization and the way in which it is delivered thakimize its effectiveness. Our firm
belief is that our visualizations need to be embedded “Buided Inquiry” framework, and
that simply providing accessibility and the opportunity éxploration is not sufficient for
effective student learning. The real question at this peiftow to embed visualizations
effectively in curricula material.
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