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Abstract:  The Technology Enabled Active Learning (TEAL) Project at MIT has developed a range of 3D 
visualizations and simulations to foster intuition about electromagnetic fields and phenomena.  In this talk we 
discuss the software approaches used to create these simulations, including Java 3D applets for interactive 
visualization, passive animations created with 3ds max, and the Dynamic Line Integral Convolution (DLIC) 
method for constructing time dependent representations of the electromagnetic field at close to the resolution of 
the computer display (Sundquist, 2003). 
 
 
Introduction 
 
Over the last eight years, the MIT Physics Department has introduced major changes in the 
way that introductory physics is taught at the Institute, through the Technology Enhanced 
Active Learning (TEAL) Project (see Figure 1).  The TEAL Project was under Departmental 
guidance and was an outgrowth of initiatives sponsored by the MIT Council on Educational 
Technology.  The courses involved are the various flavors of 8.01 (mechanics) and 8.02 
(electricity and magnetism).   The new format is a merger of lecture, recitations, and hands-on 
laboratory experience into a technologically and collaboratively rich experience for incoming 
freshmen, and is described and assessed in Dori and Belcher (2005).  We are not the first to 
teach in this format.  “Studio Physics” loosely denotes a format instituted in 1994 at 
Rennesaeler Polytechnic Institute by Jack Wilson.  This pedagogy has been modified and 
elaborated on at a number of other universities, notably in the North Carolina State University 
Scale-Up program.  We have expanded on the work of others by adding a component centered 
on active and passive visualizations of electromagnetic phenomena, supported in part by 
grants from NSF.  In this paper we will discuss those visualizations, which are open source 
under a liberal license (see http://web.mit.edu/viz/soft/ ).  You can find the visualizations 
discussed in this paper and many others by going to the link below.   
 

http://web.mit.edu/8.02t/www/802TEAL3D/teal_tour.htm 
 
 Our contention is that using visualizations helps students in understanding 
electromagnetic fields because in this way we can make the normally unseen seen.  Moreover, 
when animated, the dynamical effects of fields can be understood by analogy with rubber 
bands and strings.  The insight connecting field shape to dynamics is due to Faraday, the 
father of the concept of fields.  Making the fields visible and animated and using the analogy 
of rubber bands and strings gives insight into the reasons that fields have the effects that they 
do.   
 



 
 

Figure 1:  The D’Arbeloff Active Learning Classroom at MIT. 
 

 
Dynamic Line Integral Convolution (DLIC) 

 
 We first discuss a novel technique for visualizing fields which was developed at MIT 
in the course of the TEAL Project.  The visualization of time dependent vector fields is a 
central problem in scientific visualization.  There have been two advances in computer 
graphics since 1993 which have fundamentally changed the way that vector fields can be 
visualized in two dimensions.  The first of these was the introduction of the Line Integral 
Convolution (LIC) method for showing the structure of vector fields at a resolution near that 
of the display, using textures generated by convolving the vector field with a grid of pixels of 
random brightness [Cabral and Leedom, 1993].   The second was the introduction of a method 
for the animation of a LIC using a second velocity field to evolve the underlying grid of 
random pixels used to generate the LIC [Sundquist, 2003]. This latter method, called 
Dynamic Line Integral Convolution (DLIC), produces an animated sequence of images of the 
first field such that the time dependence of that field is evident from frame to frame by the 
inter-frame coherence in the LIC texture pattern.   
 
 In a paper to be submitted to the American Journal of Physics, Belcher and Koleci 
[2007] discuss at a heuristic level how these two algorithms work, and why they are effective 
learning tools for electromagnetism.  The motivation for this paper is to make the LIC and 
DLIC methods and their educational impact more widely known to the physics community.   
 



 The LIC method uses correlations in a texture pattern to show the spatial structure of a 
vector field.  To explain heuristically how the LIC algorithm works, we first consider a 
constant field.  Given a square array of NxN pixels of random brightness, we want to generate 
a textured array of the same dimension, where the texture pattern indicates the direction of the 
constant field, to within a sign.   To do this, we process our NxN random array pixel by pixel 
to produce the new texture array, as follows.  At any pixel 1 (see Figure 2), we average the 
brightness of the pixels along a line centered on pixel 1 and in the direction of the local field, 
for n pixels, n << N, and put this value in our new texture array at the same location as pixel 
1 was in the initial array. 
 

 
Figure 2:  To produce a LIC image for the constant field F, we take each pixel in a random 
pattern, for example, pixel 1, and average the brightness of the n pixels lying along a line 

parallel to F centered on pixel 1, as indicated by the while line. 
 

 We now move to an adjacent new pixel and repeat this same process again (Figure 3).  
If we move parallel to the field to get to the new pixel, say pixel 2 in Figure 3, then the 
resulting average that we obtain at pixel 2 is almost the same as the average for pixel 1, 
because most of the pixels are the same.  So the calculated brightness at pixel 2 is highly 
correlated with the brightness of pixel 1.  If on the other hand we move perpendicular to the 
field to get to the new pixel, say pixel 3 in Figure 3, the resulting average is not correlated at 
all with the average at pixel 1, because none of the pixels whose brightness is being averaged 
are the same.  This process produces a new array which has correlations in brightness (or 
darkness) along the field direction.  Another way of saying this is that we have produced a 
texture pattern where the streaks in the texture are parallel to the field direction, as shown in 
Figure 4. 
 
 Now consider the LIC procedure for a field that varies in space.  If we simply follow 
the procedure described above and average the brightness of pixels along straight lines in 
space, where the direction of the straight line is determined by the local direction of the field 
at (for example) pixel 1, we would get a visual representation of the field but it would be 
inaccurate, because we would be assuming that the local streamline can be reasonably 
approximated by a straight line along the entire n pixel averaging length.  For locations where 
the local radius of curvature of a given field line is large compared to the n pixel length of the 
averaging line, this assumption is valid.  However, if the local radius of curvature is 
comparable to or smaller than the length of n pixels along the averaging line, this assumption 



is no longer valid, and correlations in the texture pattern so generated will no longer show the 
details of structure of the field at this scale. 
 

 
 

Figure 3:  We calculate the brightness at pixels 2 and 3 by averaging over the brightness of 
the n pixels lying along the lines parallel to F centered on pixels 2 and 3, as indicated by the 

two white lines. 
   

 
  
 

Figure 4:  A LIC of a constant field, constructed in the manner described in the text. 
 
 
 To correct for this, the Cabral and Leedom LIC algorithm averages over n pixels along 
a line in space, but the averaging line is no longer a straight line, but the field line that passes 
through the point at which we are calculating the new texture value, for example pixel 1.   
That is, the texture pattern is convolved with the field structure along a line in space 
determined by the field lines, thus the name line integral convolution.  This procedure retains 
the property that movement along the local field direction exhibits a high correlation in 
brightness values, but movement perpendicular to that direction exhibits little correlation, and 
this is true even in regions of high curvature.   



 

 Figure 5 shows a DLIC of the vector function 2 2ˆ ˆ( , ) sin ( ) cos ( )x y x y= −F i j .  Even 
relatively simple functions such as this can produce complex visual images.  One of the 
attractions of this method of visualization is that it starts with a random pattern and then 
superimposes order on that pattern, but the underlying random character still persists in the 
image.  This makes the image much less “sterile” than most computer generated images.  
 

 
 

Figure 5.  A LIC of a simple vector field.   
 

 Dynamic Line Integral Convolution (DLIC) extends the LIC algorithm to time-
dependent fields. The vector field F(x,t) is allowed to vary arbitrarily over time, with the 
motion of its field lines described by a second velocity vector field, D(x,t).  That is, at any 
time t the field line of F(x,t)  passing through x at time t is displaced in space at time t + dt  to 
a new position   x + D(x,t) dt.  
 
 The DLIC algorithm originated by Sundquist produces an animation by evolving the 
random texture input used in LIC in a manner prescribed by the velocity field D.  That is, if 
T(x,t) represents our random texture map, we evolve it with time according to 
 

                                      ( ) ( )( ), , ,T t dt T t dt t+ = −x x D x                                                  (1) 

 



Intuitively, since the particles that produce the input texture advect according to the motion 
field D, the LIC convolution of the field lines of F with the texture from one frame to the next 
samples the same part of the texture pattern, since the texture particles and field lines move in 
concert. Thus, the streaks in the LIC of F appear to move from one frame to the next 
according to the motion field D.  Each output image in the sequence will individually have the 
same properties as a static LIC rendering, but successive frames will have an inter-frame 
coherence that depicts the prescribed motion of the field lines.   
 
 We now give an example of the use of this technique in electromagnetism where the 
construction of a DLIC is of physical interest.  A conducting ring with mass m, radius a, 
resistance R and self-inductance L is located on the z-axis above a stationary permanent 
magnet with a magnetic dipole moment vector that is vertical.  The normal to the ring is along 
the vertical z-axis, and the ring is constrained to move along that axis.  The ring is released 
from rest at t = 0, and falls under gravity toward the conducting ring.  Eddy currents arise in 
the ring because of the changing magnetic flux as the magnet falls toward the ring, and the 
sense of these currents will be such as to slow the ring.  The overall field configuration of the 
total magnetic field will be as shown in Figure 6.   The solution for the motion of the ring 
involves the solution to three coupled ordinary differential equations for the z-coordinate of 
the falling ring, the current in the ring, and the z-coordinate of the velocity of the falling ring.   
 
 According to the scheme introduced by Belcher and Olbert [2003] the magnetic field 
lines in this case should evolve with a velocity field given by 
 

                                                  
2B

×= E B
D                                                                  (2) 

 
The physical interpretation of this velocity field is that it represents the guiding center motion 
of a set of low energy electric monopoles initially arranged along any given magnetic field 
line, as those monopoles drift in the time-dependent electric and magnetic fields.   Using this 
definition has the advantage that the motion in the DLIC is locally in the direction of the 
electromagnetic energy flow vector.   
 
 Figure 6 shows one frame of a DLIC for the magnetic field of a conducting ring falling 
toward a stationary magnetic dipole.  Regions of high curvature occur near the two zeroes just 
above the ring.  The zeroes are distinguishable by the tilted X-like structure near them.  For 
comparison we also draw four field lines in the figure.   The full animation can be found on 
the web in links at the URL given above.   
 



 
 

Figure 6:  One frame of a DLIC for a Faraday’s Law visualization.  A conducting ring falls 
toward a stationary magnetic dipole, and eddy currents are induced in the ring. 

 
 

Java 3D Interactive Applications 
 
 In addition to many passive DLICs of electromagnetic phenomena similar to that in 
Figure 6, we have also developed a set of Java 3D interactive applets.  Figure 7 is an example 
of one of these applications, modeled on the same physics as discussed for Figure 6.  In this 
application the student has a choice of displaying the time dependent magnetic field in one of 
three different ways:  (1) a field line representation, where a discrete set of curves are drawn 
which are everywhere parallel to the local field direction; (2) a vector field grid 
representation, where a set of icons on a fixed grid of spatial coordinates represents the field 
direction at a given grid point; (3) a LIC representation.  The first two of these are 
computationally fast, and can be displayed in real time as the ring falls toward the magnet.  
The third is computationally slow, and essentially the student chooses a frame for which to 
draw the LIC and stops the real time execution of the application to display the LIC.  In 
addition, the student can vary in real time various parameters associated with the physics of 
the problem, e.g. the resistance of the ring or the magnitude of the dipole moment of the 
magnet.   
 
 

 
 



 
 

Figure 7:  An interactive Java 3D application for the falling ring.   
 
 

Pedagogical Usefulness 
 

 Visualizations and simulations are powerful tools for illustrating physical processes 
and making sense of the relationship between different physical quantities. Via visualizations, 
scenarios that are otherwise too difficult to be carried out experimentally can be explored, and 
processes that are not normally visible can be presented in a variety of ways. In addition to 
helping students grasp and understand abstract concepts, visualizations often excite learning 
interest with their visual richness.  
 
 Although visualizations are stimulating, they often do not correspond to what students 
would observe in the real world. How important is the gap between the simulated situation 
and the real world counterpart? More importantly, do students truly understand what they see, 
and do they take away from the visualizations and simulations the message that the designers 
intended to convey?  The central questions that we are currently investigating are: (1) how 
effective are visualizations in conveying key ideas; and (2) what are the essential elements of 
a visualization and the way in which it is delivered that maximize its effectiveness.  Our firm 
belief is that our visualizations need to be embedded in a “Guided Inquiry” framework, and 
that simply providing accessibility and the opportunity for exploration is not sufficient for 
effective student learning.  The real question at this point is how to embed visualizations 
effectively in curricula material.   
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